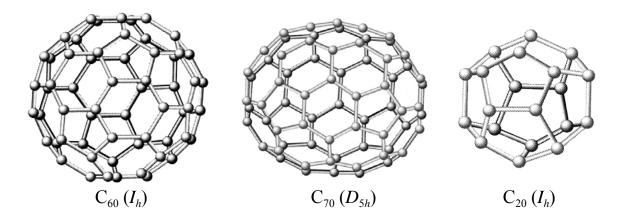
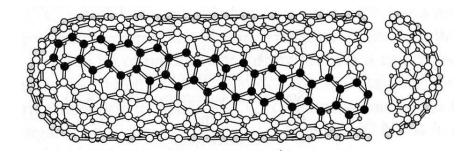

### Group 14 - The Elements Carbon

• Carbon's two naturally occurring allotropes are graphite and diamond, with graphite the more stable form.




|           |            |       | $\Delta H^{\mathrm{o}}_{f}$ |        |         |
|-----------|------------|-------|-----------------------------|--------|---------|
| allotrope | bond order | (pm)  | kJ/mol                      | kJ/mol | J/mol·K |
| diamond   | 1          | 154   | 1.88                        | 2.84   | 2.43    |
| graphite  | 11⁄3       | 141.5 | 0                           | 0      | 5.69    |

- Graphite is the stable form because it has shorter and stronger bonds, owing to  $\pi$ -delocalization in the hexagonal rings that comprise the sheets.
- Diamond, being a more ordered structure, has lower absolute entropy.
- Although conversion of diamond to graphite is thermodynamically favored, it is kinetically inhibited.


### Fullerenes

Fullerenes are a family of allotropes with the formula C<sub>2n</sub> (2n = 20, 60, 70, 76, 78, 82, 84, 96) made by passing a large electrical current through graphite rods in a helium atmosphere, thereby evaporating the rods and producing "fullerene soot."



- The soot is soluble in benzene and other organic solvents, allowing chromatographic isolation of gram quantities of  $C_{60}$  and  $C_{70}$ , and smaller quantities of other fullerenes.
- All C atoms of C<sub>60</sub> are equivalent, but there are both single and double bonds with C–C distances of 145.3 pm and 138.3 pm.
  - $C_{60}$  has 20 hexagons and 12 pentagons, like a soccer ball.
  - C<sub>60</sub> is one of the most strained molecules known, but is kinetically stable.
  - $C_{60}$  decomposes at ~750 °C.
- Fullerenes are less stable than graphite or diamond.  $C_{60} \Delta H^{o}_{f} \approx 42.5 \text{ kJ/mol}$   $C_{70} \Delta H^{o}_{f} \approx 40.4 \text{ kJ/mol}$

### Nanotubes



- Carbon nanotubes are prepared by arc-evaporating graphite.
- They are needle-like cylindrical tubes with graphite-structured walls, capped by fullerene-like hemispheres.
- Nanotubes are metallic, semiconducting, or insulating, depending on their preparation.
- Tube ends can be opened by nitric acid and then filled with various metal oxides.

## Silicon and Germanium

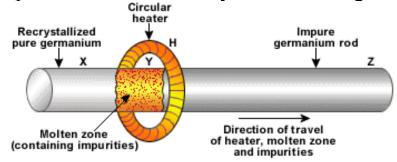
- Si and Ge are hard and brittle solids with the diamond structure ( $d_{\text{Si-Si}} = 235 \text{ pm}$ ).
- Si is the second most abundant element by weight (after oxygen) on earth.
  - Si is found in many minerals and silica (SiO<sub>2</sub> quartz, sand, etc.).
- Ge is recovered from flue dusts and coal ash.
- Both Si and Ge are important semiconductors.

# Tin and Lead

- Tin is found as the mineral cassiterite, SnO<sub>2</sub>, in Indonesia, Bolivia, Zaire, Nigeria, Thailand, and China (largest producer).
- Tin has two well characterized allotropes, nonmetallic grey tin (α-Sn) and metallic white tin (β-Sn).

$$\alpha - \operatorname{Sn} \stackrel{18 \text{ oc}}{\longleftarrow} \beta - \operatorname{Sn} \stackrel{232 \text{ oc}}{\longleftarrow} \operatorname{Sn}(l)$$

- Grey tin ("tin pest") has a diamond structure and is brittle, hard, and fragile.
- White (metallic) tin has a distorted close-packed structure.
- Sn(*l*) is used in making plate glass.
- Lead only has a *ccp* metallic form.
- Lead is found as its ore galena, PbS, from which the metal can be won by roasting.


 $PbS + O_2 \xrightarrow{\Delta} Pb + SO_2$ 

# Obtaining Si, Ge, Sn, Pb

- All can be obtained by reduction of their oxides with carbon.  $MO_2 + C \xrightarrow{\Delta} M + CO_2$  M = Si, Ge, Sn, Pb
- Si and Ge can be obtained in high purity for semiconductor use by reduction of the chloride or thermal decomposition of the iodide over a hot Ta wire.

 $\begin{array}{c} SiCl_4 + 2H_2 & \xrightarrow{\text{hot Ta wire}} Si + 4HCl \\ SiI_4 & \xrightarrow{\text{hot Ta wire}} Si + 2I_2 \end{array}$ 

• Further purification is done by zone refining.<sup>1</sup>



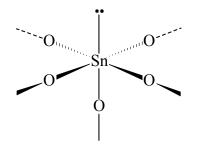
Zone refining of germanium metal.

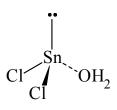
<sup>&</sup>lt;sup>1</sup>Image source: http://home.att.net/~cat6a/metals-XI.htm

## Catenation

- Carbon uniquely can form chains of M–M bonds (catenation) without limit, owing to the following factors.
  - Strength of M–M bond decreases with size.

| M–M Bond Energy (kJ/mol) |         |         |         |  |  |  |
|--------------------------|---------|---------|---------|--|--|--|
| С–С                      | Si–Si   | Ge–Ge   | Sn–Sn   |  |  |  |
| 356                      | 210-250 | 190-210 | 105-145 |  |  |  |


• Disparity between M–M and M–X bond strengths increases with size. 


| С–О  | Si–O  |       | , i i i i i i i i i i i i i i i i i i i |
|------|-------|-------|-----------------------------------------|
| 336  | 368   |       |                                         |
| С–Н  | Si–H  | Ge–H  | Sn–H                                    |
| 416  | 323   | 290   | 252                                     |
| C–Cl | Si–Cl | Ge–Cl | Sn–Cl                                   |
| 327  | 391   | 356   | 344                                     |

• As size increases,  $p\pi$ - $p\pi$  bonding rapidly becomes less effective, being significant only for carbon.

# **Group Oxidation States**

- Although +4 is the group characteristic oxidation state, the +2 state becomes more stable down the group.
- Stable carbon and silicon compounds have +4 state.
- At Ge and Sn, both +2 and +4 states are stable.
- At Pb, the bond strength is too low to compensate for the slightly higher ionization energy requirement of the Pb(IV) state in many cases. Hence, the +2 state is favored.
- The increasing stability of the +2 state is another example of the so-called "inert-pair effect."
- With Sn<sup>2+</sup> the unused pair appears to be stereochemically important in cases like SnO(*s*) and SnCl<sub>2</sub>·2H<sub>2</sub>O(*s*).



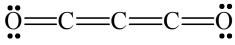


SnO coordination in solid

 $SnCl_2 \cdot 2H_2O$ (Other H<sub>2</sub>O in crystal lattice, lost at 80 °C)

• Similarly,  $\text{GeCl}_3^-$  has trigonal pyramidal  $(C_{3\nu})$  geometry.

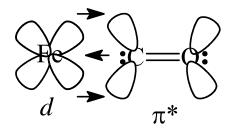
### **Carbon Chemistry - The Oxides**


• There are three oxides:

 $C_3O_2$  CO  $CO_2$ 

carbon suboxide carbon monoxide carbon dioxide

• C<sub>3</sub>O<sub>2</sub> is an evil smelling gas formed by dehydration of malonic acid.


 $3CH_2(CO_2H)_2 + P_4O_{10} \rightarrow 3C_3O_2 + 4H_3PO_4$ • C<sub>3</sub>O<sub>2</sub> is linear (D<sub>∞h</sub>).



• CO can be prepared by a similar dehydration with formic acid, using conc. H<sub>2</sub>SO<sub>4</sub>.

 $HCO_2H \xrightarrow{conc H_2SO_4} CO + H_2O$ 

• Toxicity is related to its ability to bind to Fe<sup>2+</sup> in hemoglobin through a back-bonding mechanism.



• Donation of *d* electron density into the  $\pi^*$  MO of CO weakens the bond, shifting the i.r. frequency lower.

### **Carbon Chemistry - The Oxides**

- $CO_2$  dissolves in water to function as carbonic acid, but the principal species in solution is  $CO_2(aq)$ , which is only loosely hydrated.
  - On this basis, acid hydrolysis equilibria should be written as

 $CO_2 + 2H_2O \Rightarrow HCO_3^- + H_3O^+$  $HCO_3^- + H_2O \Rightarrow CO_3^{2-} + H_3O^+$  $K_1 = 4.3 \times 10^{-7}$  $K_2 = 5.6 \times 10^{-11}$ 

- H<sub>2</sub>CO<sub>3</sub> does exist, and using the "true" activity of H<sub>2</sub>CO<sub>3</sub> has a  $K_1 \approx 2 \ge 10^{-4}$ , in keeping with its structure as (HO)<sub>2</sub>CO ( $C_{2\nu}$ ).<sup>2</sup>
- The rate of equilibrium between CO<sub>2</sub> and H<sub>2</sub>CO<sub>3</sub> is measurably slow, which is physiologically, analytically, and industrially important.
- Neutralization at pH < 8 involves a two-step mechanism beginning with direct hydration of CO<sub>2</sub>:

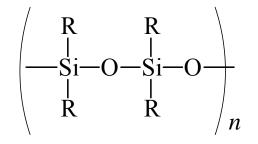
| $CO_2 + H_2O \Rightarrow H_2CO_3$           | slow |
|---------------------------------------------|------|
| $H_2CO_3 + OH^- \Rightarrow HCO_3^- + H_2O$ | fast |
| $Rate = -d[CO_2]/dt = k_1[CO_2]$            |      |

• Neutralization at pH > 10 involves direct attack on CO<sub>2</sub>:  $CO_2 + OH^- \Rightarrow HCO_3^-$  slow  $HCO_3^- + OH^- \Rightarrow CO_3^{2-} + H_2O$  fast  $Rate = -d[CO_2]/dt = k_2[CO_2][OH^-]$ 

<sup>&</sup>lt;sup>2</sup>F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, *Advanced Inorganic Chemistry*, 6th ed., Wiley, NY, 1999, p. 227.

# Carbides

- Carbon forms binary carbides with active metals, most important of which are methanides and acetylides.
- Methanides, which behave as if they contain C<sup>4-</sup> ions, are formed with high charge-density cations.
  - Methanides hydrolyze to give methane.  $Al_4C_3 + 12H_2O \rightarrow 3CH_4 + 4Al(OH)_3$  $Be_2C + 4H_2O \rightarrow CH_4 + Be(OH)_2$
- Acetylides, which contain C<sub>2</sub><sup>2-</sup> ions, are known with a number of metal cations:
  - $\begin{array}{ll} M_2C_2 & M^{\rm I} = {\rm group} \ 1, \ Cu, \ Ag, \ Au \\ MC_2 & M^{\rm II} = {\rm group} \ 2 \\ M_2(C_2)_3 & M^{\rm III} = {\rm Al}, \ La, \ Pr, \ Tb \end{array}$
  - $C_2^{2-}$  is isoelectronic with N<sub>2</sub> and has a short bond length (119-124 pm), consistent with a triple bond.
  - Acetylides hydrolyze to give acetylene.  $CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$
- A sesquicarbide, containing linear C<sub>3</sub><sup>4-</sup> ions, can be prepared by reacting Mg dust with *n*-pentane at ~680 °.<sup>3</sup>
  - In acid this hydrolyzes to give allene.  $Mg_2C_3 + 4HCl \rightarrow C_3H_4 + 2MgCl_2$


<sup>&</sup>lt;sup>3</sup>Cotton *et al.*, *ibid.*, p. 220.

### Silicon and Germanium

- $SiO_2$  (silica) is the most important silicon compound.
  - SiO<sub>2</sub> melts at  $\sim$ 1700 ° to give quartz glass.
  - Other glasses contain silicates  $(SiO_3^-, Si_2O_7^{6-}, etc.)$ , which are built up of linked SiO<sub>3</sub> and SiO<sub>4</sub> units, similar to borates. (n.b., diagonal relationship)
- A number of hydrides, called silanes, are known and are alkane analogues.

 $SiH_4$ ,  $Si_2H_6$ , ...,  $Si_6H_{14}$   $\checkmark$   $Si_nH_{2n+2}$ , n = 1-6

- Greater strength of the Si–O bond over the Si–Si bond favors formation of silicate structures.
  - Silicates include the well known silicone polymers.



- Ge chemistry is similar to Si chemistry, but less extensive.
  - The +2 state becomes more important, and the +4 state can sometime easily convert to the +2 state; e.g.,

 $\text{GeCl}_4 + \text{Ge} \rightarrow 2\text{GeCl}_2$ 

# **Tin and Lead Chemistry**

• Tin(II) solutions readily hydrolyze in all but the most acidic media, producing trimeric [Sn<sub>3</sub>(OH)<sub>4</sub>]<sup>2+</sup>.

 $3\mathrm{Sn}^{2+}(aq) + 8\mathrm{H}_2\mathrm{O} \Rightarrow [\mathrm{Sn}_3(\mathrm{OH})_4]^{2+} + 4\mathrm{H}_3\mathrm{O}^+ \qquad K = 1.7 \times 10^{-7}$ 

- Hypothetical  $[Sn(H_2O)_6]^{2+}$  is estimated to have  $K_a \approx 10^{-2}$ .
- Both SnO and SnO<sub>2</sub> are amphoteric.
  - In base  $SnO_2$  hydrolyzes to give the stannate ion.  $SnO_2 + 2OH^- + 2H_2O \Rightarrow Sn(OH)_6^{2-}$
- Lead(IV) is known only in covalent compounds, not as a free Pb<sup>4+</sup> ion.
- PbO<sub>2</sub> is a powerful oxidizing agent used in the lead storage battery. Cathode: PbO<sub>2</sub> + 4H<sup>+</sup> + SO<sub>4</sub><sup>2-</sup> + 2e<sup>-</sup>  $\Rightarrow$  PbSO<sub>4</sub> + 2H<sub>2</sub>O  $E^{\circ} = 1.46 \text{ V}$ Anode: SO<sub>4</sub><sup>2-</sup> + Pb  $\Rightarrow$  PbSO<sub>4</sub> + 2e<sup>-</sup>  $-E^{\circ} = 0.36 \text{ V}$ Cell: PbO<sub>2</sub> + 4H<sup>+</sup> + 2SO<sub>4</sub><sup>2-</sup> + Pb  $\Rightarrow$  2PbSO<sub>4</sub> + 2H<sub>2</sub>O  $E^{\circ}_{cell} = 1.82 \text{ V}$
- Lead forms Pb(CH<sub>3</sub>)<sub>4</sub> and Pb(C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>, which were used as antiknock ingredients in gasoline.
  - Their commercial synthesis involves a complicated reaction sequence that is not fully understood, but the overall reaction is

 $4NaPb + 4RCl \xrightarrow{80-100 \circ C} R_4Pb + 3Pb + 4NaCl$ 

- $Pb(CH_3)_4$  and  $Pb(C_2H_5)_4$  are nonpolar, highly toxic liquids.
- Pb(CH<sub>3</sub>)<sub>4</sub> decomposes at ~200 ° and Pb(C<sub>2</sub>H<sub>5</sub>)<sub>4</sub> decomposes at ~110 ° via a free radical mechanism.